產(chǎn)品編號 | bs-5508R-FITC |
英文名稱 | Rabbit Anti-NFkB p105/FITC Conjugated antibody |
中文名稱 | FITC標(biāo)記的細(xì)胞核因子p105/k基因結(jié)合核因子抗體 |
別 名 | NFkB p105; NFkB p105; DKFZp686C01211; DNA binding factor KBF1; DNA binding factor KBF1 EBP1; DNA binding factor KBF1 EBP1; DNA-binding factor KBF1; EBP 1; EBP-1; EBP1; KBF1; MGC54151; NF kappa B; NF kappabeta; NF kB1; NFKB 1; NFKB p105; NFKB1; NFKB1_HUMAN; Nuclear factor kappa B DNA binding subunit; Nuclear factor NF kappa B p105 subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 1; Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; p84/NF-kappa-B1 p98. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
研究領(lǐng)域 | 腫瘤 細(xì)胞生物 染色質(zhì)和核信號 信號轉(zhuǎn)導(dǎo) 細(xì)胞凋亡 轉(zhuǎn)錄調(diào)節(jié)因子 表觀遺傳學(xué) |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | Human, (predicted: Pig, ) |
產(chǎn)品應(yīng)用 | Flow-Cyt=1:50-200 ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 105kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human NFkB p105 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: This gene encodes a 105 kD protein which can undergo cotranslational processing by the 26S proteasome to produce a 50 kD protein. The 105 kD protein is a Rel protein-specific transcription inhibitor and the 50 kD protein is a DNA binding subunit of the NF-kappa-B (NFKB) protein complex. NFKB is a transcription regulator that is activated by various intra- and extra-cellular stimuli such as cytokines, oxidant-free radicals, ultraviolet irradiation, and bacterial or viral products. Activated NFKB translocates into the nucleus and stimulates the expression of genes involved in a wide variety of biological functions. Inappropriate activation of NFKB has been associated with a number of inflammatory diseases while persistent inhibition of NFKB leads to inappropriate immune cell development or delayed cell growth. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]. Function: NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. Subunit: Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-p50 complex. Homodimer; component of the NF-kappa-B p50-p50 complex. Component of the NF-kappa-B p105-p50 complex. Component of the NF-kappa-B p50-c-Rel complex. Component of a complex consisting of the NF-kappa-B p50-p50 homodimer and BCL3. Also interacts with MAP3K8. NF-kappa-B p50 subunit interacts with NCOA3 coactivator, which may coactivate NF-kappa-B dependent expression via its histone acetyltransferase activity. Interacts with DSIPI; this interaction prevents nuclear translocation and DNA-binding. Interacts with SPAG9 and UNC5CL. NFKB1/p105 interacts with CFLAR; the interaction inhibits p105 processing into p50. NFKB1/p105 forms a ternary complex with MAP3K8 and TNIP2. Interacts with GSK3B; the interaction prevents processing of p105 to p50. NFKB1/p50 interacts with NFKBIE. NFKB1/p50 interacts with NFKBIZ. Nuclear factor NF-kappa-B p50 subunit interacts with NFKBID. Directly interacts with MEN1. Interacts with HIF1AN. Subcellular Location: Nucleus. Cytoplasm. Note=Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Post-translational modifications: While translation occurs, the particular unfolded structure after the GRR repeat promotes the generation of p50 making it an acceptable substrate for the proteasome. This process is known as cotranslational processing. The processed form is active and the unprocessed form acts as an inhibitor (I kappa B-like), being able to form cytosolic complexes with NF-kappa B, trapping it in the cytoplasm. Complete folding of the region downstream of the GRR repeat precludes processing. Phosphorylation at 'Ser-903' and 'Ser-907' primes p105 for proteolytic processing in response to TNF-alpha stimulation. Phosphorylation at 'Ser-927' and 'Ser-932' are required for BTRC/BTRCP-mediated proteolysis. Polyubiquitination seems to allow p105 processing. S-nitrosylation of Cys-61 affects DNA binding. The covalent modification of cysteine by 15-deoxy-Delta12,14-prostaglandin-J2 is autocatalytic and reversible. It may occur as an alternative to other cysteine modifications, such as S-nitrosylation and S-palmitoylation. Similarity: Contains 7 ANK repeats. Contains 1 death domain. Contains 1 RHD (Rel-like) domain. Database links: Entrez Gene: 4790 Human Entrez Gene: 18033 Mouse Omim: 164011 Human SwissProt: P19838 Human SwissProt: P25799 Mouse Unigene: 618430 Human Unigene: 256765 Mouse Unigene: 2411 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 欧美老熟妇BBBBB搡BBB | 91在线无码精品秘 入口男同 | 国产精品无码在线 | 欧美潮喷十大喷潮蜜桃臀 | 亚洲天堂在线观看无码 | 成人A片产无码免费视频奶头麻豆 | 一色一伦一区二区三区 | 精品久久BBBBB精品人妻 | 亚洲AV无码成人精品区一本婷婷 | 9.1成人做爰网在线观看 | 人妻一区二区中文字幕 | 特大肥肥婆爽高潮视频 | 久久久91人妻无码精品蜜 | 五月天婷亚洲天综合网综合 | 免费看黄色生活片。 | 无套内谢少妇免费 | 可以直接看的时黄色视频 | 精品无码国产污污污免费 | 99精品视频在线 | 操逼视频在哪看? | 蜜桃AV首页在线观看 | 麻豆亚洲AV成人无码一区精品 | 亚洲AV无码精品波多影院 | 在线视频一区二区三区四区 | 亚洲精品乱码久久久久久蜜桃91 | 日韩AV免费在线观看网站 | 亚洲av无码乱码a片秀色直播 | 五级婬片A片AAAA级 婬 | 色欲狠狠躁天天躁无码中文字幕 | 欧美美女扒开下面 | 国产亲子伦XXXXX熟妇视频 | 中文字幕在线视频播放 | 蜜臀久久国产精品伦子伦 | 亚洲精品成人无码一区二区三区 | 少妇搡BBBB搡BBB搡澳门 | 性猛交ⅩXXX毛片少妇白浆 | 波多野结衣早期无码 | 免费A片国产毛无码A片 | 少妇少妇又粗又大A片 | 国产91黄色在线播放 |