產(chǎn)品編號 | bs-17494R-Cy5 |
英文名稱 | Rabbit Anti-Simian Rotavirus VP4/Cy5 Conjugated antibody |
中文名稱 | Cy5標(biāo)記的辛諾柏病毒糖VP4/外層衣殼蛋白VP4/猴輪狀病毒VP4抗體 |
別 名 | Hemagglutinin; VP4_ROTSS; Outer Capsid protein VP4 (Hemagglutinin); Outer capsid protein VP4; RVA s4gp1; RVAs4gp1; VP4; Outer capsid protein VP4; Outer capsid protein VP5*; Simian Rotavirus VP5*. |
規(guī)格價格 | 100ul/2980元 購買 大包裝/詢價 |
說 明 書 | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 細(xì)菌及病毒 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 58/85kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from Simian Rotavirus VP4 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: Simian Rotavirus VP4 (Outer Capsid protein VP4) (Hemagglutinin) functions as a spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1. VP4 is a homotrimer and adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP4 interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. VP4 interacts with host integrin heterodimer TGA4/ITGB1 and ITGA4/ITGB7. Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Function: Spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. Rotavirus entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. According to the considered strain, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1 (By similarity). Outer capsid protein VP5*: forms the spike 'foot' and 'body'. Acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. In integrin-dependent strains, VP5* targets the integrin heterodimer ITGA2/ITGB1 for cell attachment (By similarity). VP8* forms the head of the spikes. It is the viral hemagglutinin and an important target of neutralizing antibodies. In sialic acid-dependent strains, VP8* binds to host cell sialic acid, most probably a ganglioside, providing the initial contact. Subunit: VP4 is a homotrimer (Potential). VP4 adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside the capsid layer. Only hints of the third molecule are observed above the capsid surface. It probably performs a series of molecular rearrangements during viral entry. Prior to trypsin cleavage, it is flexible. The priming trypsin cleavage triggers its rearrangement into rigid spikes with approximate two-fold symmetry of their protruding parts. After an unknown second triggering event, cleaved VP4 may undergo another rearrangement, in which two VP5* subunits fold back on themselves and join a third subunit to form a tightly associated trimer, shaped like a folded umbrella. VP5* is a homotrimer (Potential). The trimer is coiled-coil stabilized by its C-terminus, however, its N-terminus, known as antigen domain or 'body', seems to be flexible allowing it to self-associate either as a dimer or a trimer. The two- to three-fold reorganization and fold-back of VP5* may be linked to membrane penetration, by exposing its hydrophobic region. Interacts with host ITGA2 (via ITAG2 I-domain); this interaction occurs when ITGA2 is part of the integrin heterodimer ITGA2/ITGB1. Interacts with host integrin heterodimer ITGA4/ITGB1 and ITGA4/ITGB7. Subcellular Location: Outer capsid protein VP4: Virion. Host rough endoplasmic reticulum (Potential). Note=Immature double-layered particles assembled in the cytoplasm bud across the membrane of the endoplasmic reticulum, acquiring during this process a transient lipid membrane that is modified with the ER resident viral glycoproteins NSP4 and VP7; these enveloped particles also contain VP4. As the particles move towards the interior of the ER cisternae, the transient lipid membrane and the non-structural protein NSP4 are lost, while the virus surface proteins VP4 and VP7 rearrange to form the outermost virus protein layer, yielding mature infectious triple-layered particles. Outer capsid protein VP8*: Virion. Note=Outer capsid protein. Outer capsid protein VP5*: Virion. Note=Outer capsid protein. Post-translational modifications: Proteolytic cleavage by trypsin results in activation of VP4 functions and greatly increases infectivity. The penetration into the host cell is dependent on trypsin treatment of VP4. It produces two peptides, VP5* and VP8* that remain associated with the virion. Similarity: Belongs to the rotavirus VP4 family. Database links: Entrez Gene: 7011406 ROTSS SwissProt: P12473 ROTSS Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 好爽射深一点丰满视频 | 中文字幕视频在线观看 | 一级91毛片特大毛片 | 日美韩蘑菇无码视频 | 成人午夜A片999影视 | 特级西西人体444w w w | 特级毛片片A片AAAAAA | 如何观看波多野结衣A片 | 亚洲欧美成人视频 | 亚洲一区二区免费视频 | 免费一级A片无码韩国 | 真实的国产乱XXXX在线 | 自拍偷拍一区二区 | 黑人与中国女一级毛片 | 国产在线观看无码免费视频 | 18禁日本美女网站视频 | 91人妻人人澡人人爽人人精品乱 | 日本无码一区二区三三 | 免费做受 高潮 | 国产老熟妇尿一尿精品播放一区区 | 亚洲 成人电影 熟女 | 成人做爰黄AA片免费看三区 | 欧美精品久久人妻无码网站仙踪林 | 亚洲午夜粉色无码区毛片 | 少妇搡BBBB搡BBB搡爱恋 | 激情综合五月丁香狠狠爱 | 久久久久久免费一级A片 | 国产伦子伦对白视频 | AV一区二区三区一杨思敏 | 成人精品一区二区,久久久 亚洲国产精品成人做爰A片 | 俺来也俺也啪WWW色 富婆鸭子一区二区三区 | 精品国偷自产国产一区 | 无码人妻久久一区二区三区蜜桃 | 香港三日本三级少妇99 | 天天爽日日澡AAAA片 | 在线播放永濑唯无码中视频 | 亚洲精品无码一区二区多久 | 日本免费毛片无码无遮挡 | 日本中文字幕爱丝袜 | 国产精品无码专区 |