產(chǎn)品編號(hào) | bs-19324R-PE-Cy3 |
英文名稱 | Rabbit Anti-NPAS2/PE-Cy3 Conjugated antibody |
中文名稱 | PE-Cy3標(biāo)記的神經(jīng)細(xì)胞PAS結(jié)構(gòu)域蛋白2抗體 |
別 名 | Basic helix loop helix PAS protein MOP4; Basic-helix-loop-helix-PAS protein MOP4; bHLHe9; class E basic helix loop helix protein 9; Class E basic helix-loop-helix protein 9; FLJ23138; Member of PAS protein 4; Member of PAS superfamily 4; MGC71151; MOP4; Neuronal PAS domain containing protein 2; Neuronal PAS domain protein 2; Neuronal PAS domain-containing protein 2; Neuronal PAS2; NPAS2; NPAS2_HUMAN; PAS domain containing protein 4; PAS domain-containing protein 4; PASD4. |
規(guī)格價(jià)格 | 100ul/2980元 購(gòu)買 大包裝/詢價(jià) |
說(shuō) 明 書(shū) | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 神經(jīng)生物學(xué) 轉(zhuǎn)錄調(diào)節(jié)因子 表觀遺傳學(xué) |
抗體來(lái)源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | Mouse, Rat, (predicted: Human, Dog, ) |
產(chǎn)品應(yīng)用 | ICC=1:50-200 IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 92kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human NPAS2 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲(chǔ) 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: The protein encoded by this gene is a member of the basic helix-loop-helix (bHLH)-PAS family of transcription factors. A similar mouse protein may play a regulatory role in the acquisition of specific types of memory. It also may function as a part of a molecular clock operative in the mammalian forebrain. [proBMAL1-NPAS2 heterodimers activate E-box element (3'-CACGTG-5') transcription of a number of proteins of the circadian clock. This transcription is inhibited in a feedback loop by PER, and also by CRY proteins.vided by RefSeq, Jul 2008] Function: Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. The NPAS2-ARNTL/BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. NPAS2 plays an important role in sleep homeostasis and in maintaining circadian behaviors in normal light/dark and feeding conditions and in the effective synchronization of feeding behavior with scheduled food availability. Regulates the gene transcription of key metabolic pathways in the liver and is involved in DNA damage response by regulating several cell cycle and DNA repair genes. Subunit: Component of the circadian clock oscillator which includes the CRY proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS and the PER proteins. Efficient DNA binding requires dimerization with another Bhlh protein. Forms a heterodimer with ARNTL/BMAL1 and this heterodimerization is required for E-box-dependent transactivation. Interacts with NCOA3, KAT2B, CREBBP and EP300. Subcellular Location: Nucleus. Similarity: Contains 1 basic helix-loop-helix (bHLH) domain. Contains 1 PAC (PAS-associated C-terminal) domain. Contains 2 PAS (PER-ARNT-SIM) domains. Database links: Entrez Gene: 4862 Human Entrez Gene: 18143 Mouse Omim: 603347 Human SwissProt: Q99743 Human SwissProt: P97460 Mouse Unigene: 156832 Human Unigene: 705895 Human Unigene: 2380 Mouse Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| A片试看120分钟做受图片 | 无码av久久久蜜桃成熟时电影 | 久久精品秘 一区二区国产 久久99精品国产自在现线 | 国产亲子伦视频一区二区三区 | 欧一美一性一交一精品 | 97精品人妻一区二区三区蜜桃 | 中文字幕在线免费看 | 少妇色欲肉欲AV啪啪 | 人妻熟妇国产乱码精品精 | 中文字字幕在线中文乱码修改方法 | 久久久久久久女国乱 | 人妻丰满熟妇AV无码 | 国产熟妇婬乱A片免费看牛牛 | 国产91熟女高潮一区二区 | 中文字幕av一区二区 | 国产成人性A片免费观看办公室 | 黑人群交亚洲美女 | 四季Av夜夜嗨噜噜噜蜜臀 | 安徽妇搡BBBB搡BBBB | 3D动漫精品啪啪一区二区观看 | 91午夜人妻人人做人爽 | 国产又黄又爽又硬专区 | 国产无人区码熟妇毛片多 | 安徽妇女BBBWBBBwm | 国产乱子伦农村叉叉叉 | 高请无码肉体全黄毛片 | 欧美日韩成人久久久免费看 | 亚洲日韩在线视频 | 麻豆传媒免费在线观看 | 性猛交AAAA片免费看直播软件 | 国产鲁鲁视频在线观看特色 | 2018日日干夜夜爽 | 国产精品久久久久久精 | 国产日韩丝袜精品av | 四川妇女搡bbbb搡bbbb搡 | 色欲AV一区二区三区 | 国产又粗又猛又黄又爽 | 性一交一无一乱一在线观看 | 国产精品丝袜一区二区 | 少妇性BBB搡BBB爽爽爽四川 |